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Abstract

Interpretable-by-design models are gaining traction in
computer vision because they provide faithful explanations
for their predictions. In image classification, these models
typically recover human-interpretable concepts from an im-
age and use them for classification. Sparse concept recov-
ery methods leverage the latent space of vision-language
models to represent image embeddings as a sparse com-
bination of concept embeddings. However, because such
methods ignore the hierarchical structure of concepts, they
can produce correct predictions with explanations that are
inconsistent with the hierarchy. In this work, we propose
Hierarchical Concept Embedding and Pursuit (HCEP), a
framework that induces a hierarchy of concept embeddings
in the latent space and uses hierarchical sparse coding to
recover the concepts present in an image. Given a seman-
tic hierarchy of concepts, we construct a corresponding hi-
erarchy of concept embeddings and, assuming the correct
concepts for an image form a rooted path in the hierarchy,
derive desirable conditions for identifying them in the em-
bedded space. We show that hierarchical sparse coding re-
liably recovers hierarchical concept embeddings, whereas
vanilla sparse coding fails. Our experiments demonstrate
that HCEP outperforms baselines on real-world datasets
in concept precision and recall while maintaining compet-
itive classification accuracy. Moreover, when the number
of samples is limited, HCEP achieves superior classifica-
tion accuracy and concept recovery. These results suggest
that incorporating hierarchical structures into sparse cod-
ing yields more reliable and interpretable image classifica-
tion models.

1. Introduction
Machine learning has been adopted in many applications,
including image classification, question answering, and rec-
ommendation systems [16, 32, 52]. While machine learning
models have achieved accuracies comparable to or beyond
human experts, the lack of interpretability in these models
has raised concerns about their trustworthiness [18, 37, 54].
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Figure 1. Overview of our Hierarchical Concept Embedding and
Pursuit (HCEP) framework for interpretable image classification.
For each classification task, we adopt a semantic hierarchy (where
the classes are the leaves) to create a dictionary with hierarchical
structures. Then, given an image embedding, we recover a sparse
representation that respects the hierarchy, which is the unique path
in the hierarchy that provides a correct explanation (shown in
green).

Interpretable models in computer vision generally fall
in two categories: post-hoc explanation and interpretable-
by-design. Post-hoc explanation methods aim to provide
insights into the decision-making process of pre-trained
black-box models [39, 53, 56, 57]. However, such meth-
ods often suffer from a lack of faithfulness and stability of
the explanations to the original pre-trained models [1, 5].
Interpretable-by-design methods build interpretability di-
rectly into the model training process [2, 10, 29]. Such
models usually consist of two steps: (1) extracting human-
interpretable concepts from the input and (2) using only
these concepts for downstream tasks such as classification
or regression. For instance, given an image of a cat, an
interpretable-by-design model would first extract concepts
such as animal, furry, and short muzzles, and
then classify the image using only these concepts.

Recent methods for recovering human-interpretable con-
cepts from images differ in how supervision is used and
whether they can handle unseen concepts. In fully su-
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pervised concept recovery, a model is trained to predict a
predefined set of concepts [28, 29]. While effective, this
approach does not generalize to unseen concepts, and re-
quires annotations that are often costly for large datasets
with many concepts. In concept-specific supervised recov-
ery, the model receives both an image and a concept and
is trained to predict whether the concept is present in the
image. This also requires annotated data, but by leverag-
ing vision-language embeddings such as CLIP [52], it may
generalize to new concepts at inference time [9]. Zero-shot
concept recovery methods rely solely on pre-trained vision-
language models to predict concepts without requiring ad-
ditional annotations [43]. Finally, sparse concept recovery
methods start with a predefined set of concepts and identify
those present in an image by representing the image em-
bedding as a sparse linear combination of the concept em-
beddings [4, 8]. This approach is scalable as it focuses on
selecting a small number of the most relevant concepts.

That being said, concept recovery methods in
interpretable-by-design models overlook the fact that
semantic synsets 1 often possess hierarchical relationships,
e.g., hypernyms and hyponyms. As illustrated in Figure 1,
we consider the hierarchy of concepts to take the form of
a tree whose leaves are the object classes. Thus, there is a
unique path connecting a class to the root of the tree, and
the concepts along that rooted path can be viewed as an
explanation for the class. For example, the explanation for
cat in Figure 1 is mammal, mammal → animal, and
animal → cat. However, the aforementioned methods
do not account for the hierarchy, and consequently, may
recover concepts that are inconsistent with the hierarchy,
leading to false explanations and predictions.

Contributions. To address these issues, this paper pro-
poses Hierarchical Concept Embedding & Pursuit (HCEP),
a framework that leverages the hierarchical relationships
between concepts to improve concept recovery for inter-
pretable image classification. We summarize HCEP as fol-
lows and highlight our contributions.

• Hierarchical Concept Embedding (§3): Given semantic
concepts under a hierarchy, how can we embed them ac-
cording to the semantic hierarchy to facilitate concept re-
covery? We propose ideal geometric properties for hi-
erarchical concept embeddings, namely embeddings of
descendant synsets should be close to that of the parent
synsets, while embeddings of sibling synsets should be
well-separated. We further embody hierarchical orthog-
onality inspired by the intriguing study in large language
models [50]. These properties are theoretically analyzed
and empirically verified on vision-language models.

1A synset is a categorical concept that groups all synonyms together
(e.g., cats). A concept is a higher level abstraction that includes synsets
and differences of synsets.
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Figure 2. Illustration of the hierarchical latent data model in R2.
The root node spawns two child nodes, animal and tree, each
having their own children. There are two desirable conditions for
concept identifiability: (1) The children cluster around the parent
while being separated themselves; (2) The difference between a
child and its parent (shown as red arrows) is orthogonal to the
parent, and the differences between the children of a parent form
a simplex (which is a line in R2). The difference vectors capture
the characteristics that distinguish each child from its parent. See
§3 for more details.

• Hierarchical Concept Pursuit (§4): Based on the geomet-
ric properties above, we propose a concept recovery pro-
cedure that proceeds in two steps. It first constructs a hi-
erarchical dictionary from pretrained vision-language
embeddings, which are the differences of the embed-
dings of parent and child synsets. Then, it leverages hier-
archical sparse coding to effectively recover a rooted path
in the hierarchy, thus recovering the concepts for inter-
pretable classification.

• Interpretable Image Classification (§5): Our experiments
on synthetic and real-world datasets demonstrate that
HCEP outperforms sparse concept recovery baselines
in concept recovery while maintaining competitive
classification accuracy. In few-shot settings, HCEP out-
performs all interpretable baselines in terms of both clas-
sification accuracy and concept recovery. We also show
that for existing datasets without a predefined hierarchy,
we can construct a meaningful hierarchy using taxonomy
induction methods [24, 36, 63] and still achieve improved
concept recovery using our framework.

2. Preliminaries

2.1. Interpretable-by-design models
Common interpretable-by-design classification models con-
sist of two steps: (1) extracting human-interpretable con-
cepts from the input and (2) using this concept-based rep-
resentation as the input to a simple classifier (e.g., a linear
classifier) to predict. Since the classifier has to be simple
for interpretability, the main design space lies in concept ex-
traction. Initial work used supervision to learn concept ex-
tractors; however, they are not scalable because they require
extra labeled data [29]. A more recent approach is to use
pre-trained embeddings to extract concepts from data, with
the goal of representing an image embedding as a sparse
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linear combination of concept embeddings [4, 8]. In this
work, we focus on concept extraction on pre-trained image
embeddings via the sparse coding objective.

2.2. Sparse coding for concept extraction
Sparse coding aims to represent data as a sparse linear com-
bination of basis elements, typically chosen from an over-
complete dictionary [21]. Given an input signal x ∈ Rd,
sparse coding seeks to find a sparse vector z ∈ Rk and a
dictionary D ∈ Rd×k such that x ≈ Dz, and the sparsity
of z encourages the model to use only a few dictionary el-
ements to reconstruct the input signal. In interpretable im-
age classification, the signal x is typically the embedding
of an image obtained from a pre-trained model, and the dic-
tionary D consists of text embeddings that correspond to
human-interpretable concepts [4, 8].

The goal is to find a sparse representation z that cap-
tures the most relevant concepts in the image. This can be
achieved by solving the following optimization problem:

min
z
∥x−Dz∥22 + λ∥z∥0, (1)

where ∥ · ∥0 denotes the ℓ0 norm and λ is a regulariza-
tion parameter that controls the trade-off between recon-
struction accuracy and sparsity.2 Eq. (1) can be solved us-
ing various algorithms, such as orthogonal matching pursuit
(OMP) [51] or basis pursuit (ℓ1 relaxation) [11]. For inter-
pretable image classification, we will focus on OMP due to
its connection to the information pursuit framework for in-
terpretability [8]. See App. A.2 for a brief review of sparse
coding methods.

The concept extraction step, formulated in Eq. (1), as-
sumes that concepts describing an object are independent
of each other; however, in reality, concepts are often hi-
erarchically structured, as objects can be categorized into
broader synsets and sub-synsets. For example, the synset
vehicle can be further divided into car, truck, and
motorcycle, each of which can be further divided into
more specific synsets. The concepts, which implicitly de-
scribe the difference between a fine-grained synset and its
parent synset, form the edges of the synset hierarchy. To
capture this hierarchical structure, we need to extend the
sparse coding framework to incorporate hierarchical rela-
tionships among concepts. In the next section, we will for-
malize this idea by proposing a hierarchical concept embed-
ding model.

3. Hierarchical Concept Embedding Model
Given semantic synsets under a hierarchy, how can we rep-
resent them as vectors corresponding to the semantic hier-
archy so as to facilitate concept recovery? In this section,

2Although not the initial motivation, the validity of this approach is
supported by the linear representation and superposition hypotheses [20,
48, 55].

𝒂(3)

𝒂(4)

Root 𝐎𝒂(1) 𝑎(2)

𝒂(5)

𝒂(6)
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anc(𝒂(3)) = {𝐎, 𝒂(1)}

lev(𝒂(3)) =  2
des(𝐎) = {𝒂 𝑖 | i=1, … , 6}

Figure 3. An example hierarchy with L = 2 levels, branch-
ing factor b = 2, and NL = 6 nodes in total. Each node
i ∈ A has an associated vector representation a(i) ∈ Rd,
where A = {1, . . . , NL} is the set of node indices. Let
par(·), chi(·), anc(·),desc(·) : A → P(A) respectively be func-
tions returning the set of parent, children, ancestors, and descen-
dants of a node. The level of a node is the number of its ancestors,
that is lev(i) = | anc(i)|.

we describe ideal geometric conditions for hierarchical con-
cept embeddings, which are empirically verified on vision-
language models. These conditions later drive the design of
the concept recovery algorithm in the next section (§4).

We first describe some desiderata for a hierarchical rep-
resentation that allows for concept identifiability:
• Well-clustered synsets (§3.1): Sibling synsets should be

well-separated in the embedding space to ensure that they
can be easily distinguished from each other. Also, child
siblings should cluster around their parents. As a conse-
quence, concepts with different ancestries would be well-
separated and can be reliably recovered.

• Hierarchical independence [50] (§3.2): The concepts
that distinguish a child synset from its parent are inde-
pendent of the parent synset itself. The intuition is that if
we make an object more mammal-like, it should not alter
the relative probability of it being a dog vs a cat. This
condition ensures that the semantic meaning of hierarchi-
cal synsets is preserved in the embedding space, thereby
corresponding to real-world synsets.
To formalize these desiderata, we describe notations for

representing hierarchies in a vector space in Fig. 3.

3.1. Well-clustered synset embeddings
To ensure that each node in the hierarchy can be uniquely
assigned to its parent, we impose geometric constraints on
the embedding space. The following proposition formal-
izes conditions that guarantee well-separated subtrees and
unambiguous parent identification.

Proposition 3.1 (Well-clustered hierarchy ensures unique
parent assignment). Suppose the following geometric con-
ditions hold for all nodes in the hierarchy:
1. Subtree containment: Each subtree rooted at node i

is contained in a cone with vertex a(i) and half-angle
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θlev(i):

max
j∈desc(i)

∠(a(i),a(j)) ≤ θlev(i), i = 1, . . . , NL. (2)

2. Sibling-cone disjointness: For any parent node i and
any pair of distinct children j, j′ ∈ chi(i), their corre-
sponding subtree cones do not intersect:

∠(a(j),a(j′)) > θlev(j) + θlev(j′) = 2 θlev(i)−1. (3)

Then the subtrees rooted at any two sibling nodes are dis-
joint, and every node has a unique parent.

All proofs are provided in App. B. A sufficient way to
satisfy both conditions in Proposition 3.1 is through a geo-
metric half-angle decreasing schedule, as presented next.

Proposition 3.2 (Geometric half-angle decreasing sched-
ule). If the half-angles satisfy

θl+1 ≤ min{r, 1/b} θl, r ∈ (0, 1/2), (4)

then both conditions in Proposition 3.1 are satisfied.

Intuitively, the geometric decrease in half-angles ensures
that as we go down the hierarchy, sibling cones remain dis-
joint and contained within their parent cone. However, as
the hierarchy deepens, these angles can become small, mak-
ing it harder to distinguish between sibling synset embed-
dings. This is an inherent limitation of hierarchical embed-
dings in Euclidean space, which might require alternative
geometries (e.g., hyperbolic space) for more faithful em-
beddings of deep hierarchies [46]. Extending the frame-
work to non-Euclidean geometries is an interesting direc-
tion for future work.

3.2. Hierarchical Orthogonality and Simplex Struc-
ture

Inspired from the geometric conditions on the concept em-
beddings in large language models [50], we further recall
hierarchical orthogonality and simplex conditions on the
concept embeddings:
• The difference between a child and its parent is orthogo-

nal to the parent. For a parent node a(i), any child node
a(j) ∈ chi(i) satisfies (a(j) − a(i))⊤a(i) = 0.

• The difference between the b children of node i that are
independent semantically given the parent must form a
(b− 1)-simplex. Formally, {a(j)−a(i)}j∈chi(i),| chi(i)|=b

forms a (b− 1)-simplex.
As we shall see soon in the next section, these conditions
will guide use to define a dictionary that will be used for
sparse coding. Nevertheless, for these two conditions to
hold, we need a minimum dimension requirement for the
embedding space, as stated in the following proposition.

Proposition 3.3 (Depth–dimension necessity). Suppose
that at every non-leaf node up to depth L, the children sat-
isfy hierarchical orthogonality and their differences form a
regular (b−1)-simplex, i.e., Eqs. (30) and (32). Then the
ambient dimension must satisfy the depth–dimension condi-
tion: d ≥ L+ b.

Intuitively, hierarchical orthogonality imposes l+1 in-
dependent affine constraints at depth l, restricting chil-
dren to a (d−l−1)-dimensional feasible subspace; embed-
ding a regular (b−1)-simplex within that subspace requires
(d−l−1) ≥ (b−1) for all depths, yielding d ≥ L+ b.

4. Hierarchical Concept Pursuit
Given the concept embedding model described in §3, we
now turn to the problem of recovering the sparse representa-
tion of a signal generated from this model. To do so, we first
construct a hierarchical dictionary that captures the hierar-
chical structure of the synsets and concepts (§4.1). We then
propose a hierarchical sparse coding algorithm that lever-
ages this structure to enhance the recovery of sparse repre-
sentations (§4.2).

4.1. Hierarchical Dictionary Construction
First, we define the hierarchical dictionary D as[
a(1), . . . ,a(b), a(j1) − a(par(j1)), . . . ,a(jk) − a(par(jk))

]
(5)

where (j1, . . . , jk) = (j ∈ A : j > b). The first b columns
contain the root child atoms, while the remaining columns
contain the differences between synsets and their parents for
non-root child nodes.

In the context of interpretable image classification, a(i)

represents the embedding of synsets within the WordNet
[45] hierarchy.3 while the difference a(i) − a(par(i)) is the
embedding of concepts that distinguish the synset from its
parent. As an example, if a(i) is the embedding of the
synset bear and a(j) − a(i) is the embedding of the con-
cept the color white, then a(j) is the embedding of
the synset polar bear. This construction of the dictio-
nary in Eq. 5 avoids the trivial solution to the sparse for-
mulation of concept recovery (i.e., the sparsest explanation
for an image of a cat is just that it is a cat) Note that the
difference embeddings have a grounded and interpretable
meaning on their own, as they represent the direction that
differentiates a child synset from its parent. However, we
can also interpret these difference embeddings using textual
description with vision-language models (e.g., CLIP [52])
and large language models (e.g., GPT-5 [47]), as described
in §5.3.

With this model, we can verify that a signal is a sparse
linear combination of the atoms corresponding to the nodes

3We use WordNet as a concrete example, but this analysis generalizes
to other hierarchies.
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Figure 4. Hierarchical OMP has improved precision and recall
compared to standard sparse coding methods on synthetic data.

along the path from the root to the leaf node i plus some
Gaussian noise:

x = a(i)+ϵ = a(π1(i))+
∑

j∈anc(i)
j ̸=π1(i)

(
a(j)−a(par(j))

)
+ϵ. (6)

Here i ∈ A, ϵ ∼ N (0, σ2I), and π1(i) denotes the first
ancestor of i.

4.2. Hierarchical Orthogonal Matching Pursuit
We now propose a version of Hierarchical OMP [27, 34]
that uses the hierarchical structure and beam search to ex-
plore multiple hierarchically sparse hypotheses at each it-
eration. This approach allows us to maintain a diverse set
of candidate solutions while correctly navigating the hierar-
chical structure of the dictionary.

There are two main modifications from OMP: (1) Ex-
tending the sparse support only by children of the deepest
node explored so far; (2) Using beam search to manage the
hypothesis set. The overall procedure is detailed in Algo-
rithm 1. (For completeness, we describe OMP in Algo-
rithm 5). Note that for clarity, which level a synset is at,
a synset embedding a(i) in the algorithm is referred to as
al,i where l is the depth of node i. Also, except for the
root children atoms, all other atoms are not the synset them-
selves but the differences of the synsets from their parents.
We formalize the theoretical advantages of this hierarchical
approach in the following proposition.

Proposition 4.1 (Informal). Suppose that the atoms cho-
sen by Hierarchical OMP are in the correct support at each
iteration. Then, Hierarchical OMP yields a strictly larger
ERC [61] success region than OMP on the full dictionary.

This result supports our choice of using beam search to
explore multiple hypotheses, as it increases the likelihood
of recovering the correct hierarchical support.

Algorithm 1 Hierarchical OMP

Require: x ∈ Rd, dict D, roots R, child map chi(·), an-
cestry anc(·), tol ϵ, max steps T , beam B

1: Initialize with a null hypothesis: H(0) ←
{(
∅,x,0

)}
2: for t = 0, . . . , T − 1 do
3: if minh∈H(t) ∥rh∥2 < ϵ then
4: break
5: Hnew ← ∅
6: for each hypothesis h inH(t) do

7: Dactive ← EXTENDDICT(h, t) (Alg. 2)

8: ci ←
∣∣∣ ⟨r,d(i)⟩
∥r∥2 ∥d(i)∥2

∣∣∣ for all d(i) ∈ Dactive

9: C ← top-B indices of ci
10: if C = ∅ then ▷ leaf reached
11: Add h toHnew ▷ keep hypothesis
12: continue
13: Hext ← EXTENDHYPO(h, C,x,D) (Alg. 3)
14: Hnew ← Hnew ∪Hext

15: H(t+1) ← PRUNEBEAM(Hnew, B) (Alg. 4)

16: Return zh⋆ where h⋆ ∈ argminh∈H(t) ∥rh∥2

Algorithm 2 Extend Active Dictionary

Require: iteration t, hypothesis h = (S, r, ilast), rootsR
1: if t = 0 then
2: return {a1,i : i ∈ chi(R)}
3: else
4: return {al+1,j − al,ilast

: j ∈ chi(ilast)}

Algorithm 3 Extend Hypothesis with Sparse Update

Require: hypothesis h = (S, r, ilast), candidates C, signal
x, dict D

1: Hext ← ∅
2: for each i ∈ C do
3: S ′ ← S ∪ {i}
4: z′ ← argminw ∥x−DS′w∥22
5: r′ ← x−DS′z′

6: Add (S ′, r′, i) toHext

7: returnHext

Algorithm 4 Beam Pruning

Require: hypothesesH, beam size B
1: Hsorted ← hypotheses inH sorted by ∥rh∥22
2: return top-min(B, |Hsorted|) elements ofHsorted
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5. Experiments

In this section, we evaluate the performance of HCEP by
comparing Hierarchical OMP on both synthetic (§5.1) and
real-world datasets (§5.2). We compare our method with in-
terpretable baselines in terms of concept recovery accuracy
and classification performance.

5.1. Synthetic Experiments
We first compare the performance of Hierarchical OMP
(Alg. 1) with standard OMP on synthetic data generated
from the Hierarchical Concept Embeddings model in §3.
We evaluate the reconstruction error and the recovery of
the ground-truth sparse support (i.e., the path from the root
to the leaf node) under varying noise levels and hierarchy
depths.

We choose a branching factor of b = 3, hierarchy depth
L = 7, and dimension d = 50. Note that this dimension
satisfies the depth–dimension condition in Eq. (37) since
d = 50 ≥ 7 + 3 = 10. This gives us 2187 leaf synsets and
3280 atoms in the dictionary. We generate 5 samples per
leaf for a total of 10, 935 samples. Further details on how
the synthetic data is generated can be found in App. C, and
the hyperparameters can be found in App. D.1.

See the results in Fig. 4. We observe that Hierarchical
OMP consistently outperforms standard OMP in both pre-
cision and recall. This demonstrates the effectiveness of
incorporating hierarchical structure into sparse coding for
improved concept recovery.

5.2. Real-world Experiments
In this section, we evaluate HCEP on real-world image clas-
sification tasks. First, given a class (which is a leaf node),
we estimate the class embeddings by taking the mean of
the CLIP [52] image embeddings for images belonging to
that class. For the non-leaf synsets, we estimate their em-
beddings using the mean of their children’s embeddings.
Next, we construct the hierarchical dictionary as described
in Eq. (5). We keep this fixed dictionary for all experiments.
We next provide the overall experiment settings; more de-
tails are in App. D.2.

Hierachical Orthogonality and Well-Clustered Synsets
in Real-world Datasets. To test the validity of the hierar-
chical orthogonality [50] condition in real-world datasets,
we measure the cosine similarity between the difference
vectors of child-parent pairs and their parents, as seen in
Fig. 5 for ImageNet (see Fig. 11 for CIFAR-100). We find
that the average cosine similarity is close to zero. How-
ever, if child and random non-parent pairs are considered,
the average cosine similarity is significantly different from
zero. We also test the well-clustered synset condition (Prop.
3.1) on ImageNet in Fig. 6, showing that most branches are
tightly clustered and well-separated from other branches.
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Figure 5. Observed Hierarchical Orthogonality on ImageNet for
CLIP [52]. The cosine similarity between child-parent difference
vectors and their parents is close to zero, while random non-parent
pairs have significantly higher cosine similarity. This suggests that
hierarchical orthogonality [50] holds even on contrastively trained
vision models.
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Figure 6. Clusters are tight on ImageNet for CLIP image em-
beddings. (Top): Fixed a node i, this is the proportion of non-
descendants of i intersecting the cone of i. (Bottom): Given the
same node i, we show the mean angle violation (non-violating an-
gles are counted as 0).

Datasets. We evaluate on three datasets: (1) ImageNette;
(2) ImageNet [14]; (3) CIFAR-100 [31]. For ImageNet-
based datasets, we can use the WordNet hierarchy directly.
For CIFAR-100, we use taxonomy induction methods [63]
to construct a hierarchy over the classes.

Baselines. We compare HCEP with the following base-
lines: (1) OMP [8, 51] using the full dictionary; (2) Concept
Bottleneck Models [29] that use supervised concept anno-
tations to learn a concept extractor; (3) Nearest Neighbor
(NN) classifier using the synset embeddings directly (this
can be thought of as using a black box zero-shot classifier);
(4) Hierarchical NN that traverses the hierarchy using near-
est neighbor search at each level.

Evaluation Metrics. We evaluate the models based on
(1) classification accuracy; (2) support precision and re-
call, which measure how well the recovered sparse support
matches the ground-truth path in the hierarchy.

Classification Procedure. For each image, we extract its
CLIP embedding. Next, the different methods extract the
sparse representation: (1) The sparse-coding methods (Hi-
erarchical OMP and Standard OMP) recover a sparse repre-
sentation using their respective algorithms; (2) Hierarchical
NN recovers the sparse code by traversing the hierarchy us-
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Figure 7. Interpretable image classification on on CIFAR-100 (top) and ImageNette (bottom). HCEP has state of the art support preci-
sion/recall while maintaining comparable classification accuracy.

Table 1. As we reduce the number of images per class in ImageNet, HCEP consistently improves test classification accuracy, support
precision, and support recall over all baselines. Result at sparsity level 14.

Method Classification Accuracy Support Precision Support Recall

12-shot 25-shot 50-shot Full 12-shot 25-shot 50-shot Full 12-shot 25-shot 50-shot Full

OMP 45.8 52.9 57.4 70.7 15.6 16.3 16.6 17.5 36.6 37.9 38.3 41.0
Hierarch. NN 28.1 29.0 29.8 15.7 47.9 48.2 48.6 34.9 44.1 44.0 44.1 28.7
CBM 24.7 34.4 44.0 78.5 30.5 31.8 33.3 45.6 60.0 62.9 66.2 97.3

HCEP (Ours) 52.1 57.3 61.3 65.2 71.2 72.2 73.0 70.1 71.8 72.7 73.4 71.1

ing nearest neighbor search at each level; (3) CBMs get the
code for all atoms at once by training a classifier on top of
the CLIP image embeddings. The recovered sparse codes
are then fed into a linear classifier trained on the training set
to predict the class labels. For the Nearest Neighbor base-
line, we directly use the synset embeddings to classify the
images without any intermediate representation.

See the results on ImageNet (Tab. 1), CI-
FAR100/ImageNette (Fig. 7). We observe that Hierarchical
OMP achieves higher support precision and recall com-
pared to other baselines, indicating better recovery of
relevant concepts. In the low-data setting, Hierarchical
OMP outperforms all interpretable baselines in classifica-
tion accuracy and support precision/recall, demonstrating
its robustness in low-data settings.

5.3. Text Interpretation of Synset Differences

To qualitatively evaluate an alternative text meaning of the
synset differences, which form the atoms in our hierarchi-
cal dictionary, we use CLIP text embeddings and GPT-5
[47]. First, for each pair of parent-child, we generate a
text description of the difference between the parent and
child synset using GPT-5. Then, we pool the text embed-
dings of these descriptions to form a set of candidate con-
cept embeddings. Next, for each synset difference vector,
we find the top-k neighbor in the candidate concept em-
beddings. Finally, we utilize GPT-5 to generate a summary
of the top-k neighbor descriptions, which helps interpret
the synset difference. See some example interpretations for
some parent-child pairs in WordNet [45] (the hierarchy be-
hind ImageNet) in Tab. 2.
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Table 2. Example text interpretations of child–parent synset dif-
ferences produced via CLIP embeddings and GPT summarization.

Parent→Child Pair Text Interpretation

bear→ polar bear thick matte white fur blend-
ing with snow.

container→ basket open-top woven or perforated
sides with handles.

structure→ lumbermill vertical log-sawing machines
and plank conveyors.

citrus→ orange round, bright orange, pebbled
rind.

6. Related Work

Interpretable-by-design models. Interpretable-by-design
models aim to provide explanations for their predictions by
using human-interpretable concepts as intermediate repre-
sentations. Early works explored attribute-based classifi-
cation for face verification [33] and learning to detect un-
seen object classes through attribute transfer [35]. Sub-
sequent works include Concept Activation Vectors [28],
which use linear classifiers to identify directions in the em-
bedding space corresponding to specific concepts. Concept
Bottleneck Models [29] extend this idea by training mod-
els to predict concepts before predicting. In an adjacent
line of work, Information Pursuit [23] is used as a crite-
rion to choose the most relevant concepts [7, 9, 30]. More
recent works have explored leveraging pre-trained embed-
dings and sparse coding for identifying specific concept di-
rections [4, 8]. Our work builds upon these foundations by
introducing a concept embedding framework that captures
the hierarchical relationships among synsets in interpretable
image classification.

Sparse Recovery. Sparse recovery aims to recover a sparse
signal from a set of observations, often using techniques
such as Orthogonal Matching Pursuit (OMP) [51], Basis
Pursuit [11]. Sparse coding has been widely used in image
processing [40, 41], signal processing, and machine learn-
ing. Although there have been works on hierarchical sparse
coding [25, 27, 34], they do not consider the hierarchical
structure of concepts in the context of interpretable models
or deep representation learning.

Geometric Structures of Meanings in Vector Embed-
dings. A notable example of geometric structures in
vector embeddings is Word2Vec [44], where certain se-
mantic relationships can be captured through vector arith-
metic. More recent works have explored the linear structure
[26, 49, 59, 60] and the hierarchical and categorical con-
cepts in vector spaces [50]. Our work extends these ideas to
the context of sparse coding for interpretable models, pro-
viding a foundation for hierarchical concept recovery.

7. Limitations
While our framework demonstrates clear advantages in con-
cept recovery, there are several limitations:
Dimensionality Constraints. Our theoretical analysis
(Proposition 3.3) establishes that embedding a hierarchy
with depth L and branching factor b requires ambient di-
mension d ≥ L+b. For deep hierarchies (large L) or highly
branching structures (large b), this constraint becomes re-
strictive. Real-world embeddings from models like CLIP
typically have fixed dimensions (e.g. d = 768), which
limits the depth and complexity of hierarchies that can be
faithfully represented. Moreover, as hierarchies deepen, the
half-angles of the cones containing each subtree (Propo-
sition 3.2) must decrease geometrically. As mentioned in
§ 3.1, this limitation may necessitate exploring alternative
geometries (e.g., hyperbolic spaces) [15, 46] for more faith-
ful hierarchical representations. This is an interesting direc-
tion for future work.
Hierarchy Quality Dependence. The performance of Hi-
erarchical OMP critically depends on the quality of the pre-
defined hierarchy. For ImageNet-based datasets, we lever-
age the well-curated WordNet hierarchy, which provides se-
mantically meaningful relationships. However, for CIFAR-
100, we must use taxonomy induction methods [63], which
may produce hierarchies with inconsistencies or unclear re-
lationships.
Computational Complexity. Hierarchical OMP with beam
search (Algorithm 1) has complexity O(TBK|Dactive|),
where T is the number of iterations, B is the beam width,
K is the branching factor, and |Dactive| is the size of the
active dictionary at each level. In contrast, OMP has com-
plexity O(T |D|), where |D| is the size of the entire dictio-
nary. For large branching factors or deep hierarchies, this
can become computationally expensive. While we demon-
strate better concept recovery accuracy over standard OMP,
the computational cost remains a practical consideration for
deployment at scale.

8. Conclusion
We introduced a geometric framework for hierarchical con-
cept embeddings together with Hierarchical OMP, a pur-
suit algorithm that respects the structure of synset hierar-
chies. We analyze identifiability requirements through well-
clustered cones, hierarchical orthogonality, and simplex
structure along with algorithmic guarantees via an expanded
ERC region for Hierarchical OMP. Empirically, the result-
ing codes deliver substantially better support precision and
recall than interpretable baselines across synthetic and real-
world benchmarks, particularly in low-data regimes where
interpretability is often most valuable. Our findings high-
light the promise of structured sparse coding as a scalable
and flexible framework for interpretable machine learning.
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A. Preliminaries
A.1. Canonical regular simplex
Define

s̃j = ej −
1

b
1, j = 1, . . . , b, (7)

where {ej}bj=1 are the standard basis vectors of Rb and
1 ∈ Rb is the all-ones vector. These centred vertices satisfy∑b

j=1 s̃j = 0 and s̃⊤j s̃k =

1, j = k,

− 1

b− 1
, j ̸= k,

i.e. they

form a regular (b− 1)-simplex of unit edge length in Rb−1.

A.2. Sparse Recovery
We briefly recall two classical sparse recovery approaches
that motivate our hierarchical construction: greedy pursuit
via Orthogonal Matching Pursuit (OMP) and convex relax-
ation via Basis Pursuit (BP).

Consider the linear model

x = Dz, D ∈ Rd×k, z ∈ Rk sparse, (8)

with normalized columns (atoms) of D. We focus on the
exact linear model for clarity. The goal is to recover the
unknown sparse coefficient vector z from x. We use the
shorthand [k] := {1, 2, . . . , k} for column indices.

Matching Pursuit (MP). The classical MP algorithm
greedily selects at each step the dictionary atom most cor-
related with the current residual and updates the residual by
removing its component along that atom, without re-fitting
over the accumulated support [42]. OMP below is the or-
thogonalized variant that re-solves on the active set at every
iteration.

Orthogonal Matching Pursuit (OMP). OMP is a greedy
algorithm that orthogonalizes over the active set at each step
(See OMP in Algorithm 5; for comparison, we also provide
the full details of Hierarchical OMP in Algorithm 6), con-
trasting with our hierarchical variant. The restricted least-
squares update used at each iteration is

zS = arg min
w∈R|S|

∥x−DSw∥22, zSc = 0. (9)

The orthogonal projection step ensures previously se-
lected atoms are regressed jointly in Eq. (9) (hence “orthog-
onal”). A classic guarantee is that if z is s-sparse and the
dictionary coherence

µ(D) = max
i ̸=j
|d⊤

i dj | (10)

is small enough so that s < 1
2

(
1 + µ(D)−1

)
, then OMP

exactly recovers the support in s steps [61, 64]4.

4The OMP algorithm was introduced by Pati et al. [51]. The mutual co-
herence exact recovery bound s < 1

2
(1+1/µ) was first proved rigorously

by Tropp [61] and refined with sharp sufficient conditions and worst-case
examples by Zhang [64].
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Algorithm 5 Orthogonal Matching Pursuit (OMP)

Require: signal x ∈ Rd, dictionary D ∈ Rd×k with
normalized columns {dj}j∈[k], sparsity budget s (op-
tional)

1: Initialize support S(0) ← ∅, residual r(0) ← x, coeffi-
cient vector z ← 0, iteration index t← 0

2: for t = 0, . . . , s− 1 do

3: j∗ ← argmaxj∈[k]

∣∣∣∣∣ d⊤
j r

(t)

∥dj∥2 ∥r(t)∥2

∣∣∣∣∣ ▷ Select

highest cosine similarity
4: S(t+1) ← S(t) ∪ {j∗}
5: zS(t+1) ← argmin

w∈R|S(t+1)| ∥x − DS(t+1)w∥22;
z(S(t+1))c ← 0 ▷ Restricted least squares (Eq. 9)

6: r(t+1) ← x−Dz ▷ Residual update
7: if ∥r(t+1)∥2 = 0 then
8: break
9: return z

Basis Pursuit (BP). BP replaces the combinatorial ℓ0 ob-
jective with an ℓ1 minimization [12]:

min
z∈Rk

∥z∥1 s.t. Dz = x. (11)

This convex program promotes sparsity via soft-
thresholding effects. Under RIP or incoherence as-
sumptions similar to those for OMP, BP provably recovers
the sparsest solution when x lies in the range of a sparse
z [12, 21]. Efficient solvers include coordinate descent
[22], proximal gradient methods (ISTA/FISTA) [3, 13],
homotopy [17], and ADMM [6]. See [21, 62] for a survey.
A related penalized least-squares formulation is LASSO
[19, 58].

B. Proofs
B.1. Proof of Proposition 3.1
Statement. If subtree containment (Eq. (2)) and sibling-
cone disjointness (Eq. (3)) hold, then the subtrees rooted at
sibling nodes do not overlap.

Proof. We show that these two conditions are sufficient to
guarantee that sibling subtrees are disjoint. Suppose node k
is a descendant of node j, which is a child of parent i.

Subtree containment (Eq. (2)): Since k ∈ desc(j),
Eq. (2) gives

∠(a(j),a(k)) ≤ θlev(j). (12)

Thus, every descendant of j lies within the cone of half-
angle θlev(j) rooted at a(j), so in particular k is confined to
this cone.

Sibling-cone disjointness (Eq. (3)): Consider any sibling
j′ ∈ chi(i) with j′ ̸= j. To derive a contradiction, assume

Algorithm 6 Hierarchical OMP

Require: x ∈ Rd, dict D, roots R, child map chi(·), an-
cestry anc(·), tol ϵ, max steps T , beam B

1: Initialize with a null hypothesis: H(0) ←
{(
∅,x,0

)}
2: for t = 0, . . . , T − 1 do
3: if minh∈H(t) ∥rh∥2 < ϵ then
4: break
5: Hnew ← ∅
6: for each hypothesis h = (S, r, ilast) inH(t) do
7: if t = 0 then
8: Dactive ← {a1,i : i ∈ R}
9: else

10: Dactive ← {al+1,j − al,i : j ∈ chi(i)} ▷ l

is the depth of node i

11: Compute ci ←
∣∣∣ ⟨r,d(i)⟩
∥r∥2 ∥d(i)∥2

∣∣∣ for all

d(i) ∈ Dactive

12: C ← top-min(B, |Dactive|) indices of ci
13: if C = ∅ then
14: Add h toHnew ▷ leaf reached; keep

hypothesis
15: continue
16: for each i ∈ C do
17: S ′ ← S ∪ {i}; ▷ extend path
18: z′ ← argminw ∥x−DS′w∥22
19: r′ ← x−DS′z′

20: Add h′ ← (S ′, r′, i) toHnew

21: Prune: keep top-min(B, |Hnew|) hypotheses

22: with smallest ∥r′∥22
23: H(t+1) ← pruned set
24: Return zh⋆ where h⋆ ∈ argminh∈H(t) ∥rh∥2

that k also lies in the subtree of j′, i.e., k ∈ desc(j′). Then,
by subtree containment applied to j′, we similarly obtain

∠(a(j′),a(k)) ≤ θlev(j′). (13)

Consider the spherical triangle formed by the unit vectors
a(j)/∥a(j)∥, a(k)/∥a(k)∥, and a(j′)/∥a(j′)∥ on the unit
sphere. By the spherical triangle inequality, the angle be-
tween any two vertices is at most the sum of the angles to
the third vertex:

∠(a(j),a(j′)) ≤ ∠(a(j),a(k)) + ∠(a(k),a(j′))

≤ θlev(j) + θlev(j′), (14)

which contradicts Eq. (3). Thus, no node k can simultane-
ously belong to the subtrees of two siblings j and j′, so the
subtrees rooted at sibling nodes do not overlap.
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B.2. Proof of Proposition 3.2
Statement. If the half-angles satisfy the geometric de-
crease θl+1 ≤ r θl with r ∈ (0, 1/2), then subtree con-
tainment (Eq. (2)) . If sibling-cone disjointness (Eq. (3)),
then θl+1 ≤ 1

b θl holds. Thus there exists a placement
of the nodes such that if the half-angles satisfy θl+1 ≤
min{r, 1/b} θl with r ∈ (0, 1/2), then subtree containment
(Eq. (2)) and sibling-cone disjointness (Eq. (3)) hold.

Proof. We first show that the subtree containment condi-
tion (Eq. (2)) holds. A necessary and sufficient condition
to Eq. (2) is that the cumulative half-angles of all the lower
levels do not exceed the half-angle budget we have for this
level

L∑
k=l+1

θk ≤ θl, ∀i ∈ {1, . . . , NL}, l = lev(i). (15)

Now assume that the half-angles satisfy the geometric de-
crease with rate r ∈ (0, 1/2):

θl+1 ≤ r θl. (16)

Then, for any level l we have that

L∑
k=l+1

θk ≤
L−l∑
k=1

θl r
k(by Eq. (16)) (17)

= θl

L−l∑
k=1

rk (18)

= θl r

L−l−1∑
k=0

rk (19)

≤ θl r
1− rL−l−1

1− r
(sum of a geometric series).

(20)

Taking L→∞ yields

θl r
1− rL−l−1

1− r
→ θl

r

1− r
≤ θl, r <

1

2
,

which proves Eq. (15) and hence the subtree cone condition
Eq. (2).

For the sibling cones under a parent cone of half-angle θl
to be disjoint, it is necessary that each sibling cone’s half-
angle obeys

θl+1 ≤
1

b
θl. (21)

In any 2D plane containing the cone axis, a cone of half-
angle α appears as a planar angle of magnitude 2α. Pack-
ing b child cones of angle 2θl+1 inside the parent angle 2θl
requires bθl+1 ≤ θl.

B.3. Proof of Proposition 3.3
Statement. Under the hierarchical orthogonality con-
straints in Eq. (30) and the regular-simplex difference con-
dition in Eq. (32) at every internal node up to depth L in
ambient space Rd, it is necessary that the ambient dimen-
sion satisfies the depth–dimension condition d ≥ L+ b.

Proof. Fix a level l ≥ 0 and consider the path of ancestors
Al = {a(π0), . . . ,a(πl)}. The hierarchical orthogonality
constraints Eq. (30) define the affine feasible set for child
candidates as

Vl = {x ∈ Rd : A⊤
l x = hl},

which is Eq. (35). When the ancestor vectors are linearly
independent (the generic case, since each level introduces a
new non-collinear direction), we have

dimVl = d− (l + 1).

The regular-simplex difference condition Eq. (32) re-
quires placing b child points whose differences relative to
a feasible origin in Vl form a regular (b−1)-simplex. This
simplex has affine hull of dimension b−1; therefore it can
be embedded in Vl only if

dimVl ≥ b− 1.

Combining the two displays yields, for every level l, the
necessary inequality d− (l + 1) ≥ b− 1 ⇐⇒ d ≥ l + b.
Requiring this to hold up to the deepest level L gives d ≥
L+ b.

B.4. Intermediate results for Proposition 4.1
Lemma B.1 (Column normalization equivalence). Let
D = [d1, . . . ,dk] ∈ Rd×k with arbitrary nonzero col-
umn norms (∥dj∥2 > 0 for all j ∈ [k]), and define the
diagonal matrix W := diag(∥d1∥2, . . . , ∥dk∥2) and the
column-normalized dictionary D̂ := DW−1. For any
s-sparse z ∈ Rk with support S, set ẑ := Wz. Then
x = Dz = D̂ ẑ and supp(ẑ) = S. Moreover, OMP run
on D with the selection rule

j⋆ ∈ argmax
j

∣∣⟨r,dj⟩
∣∣

∥dj∥2
= argmax

j

∣∣⟨r,dj⟩
∣∣

∥dj∥2 ∥r∥2
(22)

is identical (same index picked at every iteration) to OMP
run on D̂ with the usual (unnormalized) correlation rule.
Equivalently, this selects the atom with the highest absolute
cosine similarity to the residual.

Proof. Immediate from d̂j = dj/∥dj∥2 and ⟨r, d̂j⟩ =
⟨r,dj⟩/∥dj∥2, together with x = Dz = DW−1Wz =

D̂ ẑ. Since diagonal rescaling of the columns in DS leaves
the column span unchanged, the orthogonal projector onto
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span(DS) is invariant to such rescaling. Therefore, once
the same index is selected, the least-squares updates uti-
lize the same projector, and the residuals match at every
step.

Definition B.2 (ERC on normalized dictionary). 5 For a
support S with D̂S full column rank, define

ERC(D̂;S) :=
∥∥ D̂†

S D̂Sc

∥∥
∞, (23)

ERC(D̂;S |T ) :=
∥∥ D̂†

S D̂T\S
∥∥
∞, (24)

for any T ⊇ S.

Lemma B.3 (Monotone ERC improvement under subtree
restriction). Let D ∈ Rd×k have arbitrary nonzero col-
umn norms and let z be s-sparse with support S. Let
T0 ⊃ T1 ⊃ · · · ⊃ TL be a nested sequence with T0 = [k]

and S ⊆ Tℓ for all ℓ = 0, . . . , L. Assume D̂S has full
column rank. Then the ERC decreases monotonically along
the restriction:

ERC(D̂;S |TL) ≤ ERC(D̂;S |TL−1) (25)

≤ · · · ≤ ERC(D̂;S |T0) (26)

= ERC(D̂;S). (27)

Proof. The quantity D̂†
S is fixed, and shrinking T only

removes columns from D̂T\S , so the maximum defining
the ERC is taken over a subset and therefore cannot in-
crease.

Lemma B.4 (ERC threshold implies restricted OMP
success). Under the assumptions of Lemma B.3, if
ERC(D̂;S |TL) < 1, then OMP run on D with the nor-
malized selection rule

j∗ ∈ argmax
j

|⟨r,dj⟩|
∥dj∥2

= argmax
j

|⟨r,dj⟩|
∥dj∥2 ∥r∥2

, (28)

restricted to TL, recovers S in s steps. Equivalently, OMP
on D̂TL

with the standard rule succeeds in s iterations.

Proof. Lemma B.1 shows that the normalized-selection
rule on D matches standard OMP on D̂. The classical
noiseless ERC theorem of Tropp [61] applied to the re-
stricted dictionary D̂TL

then yields exact support recovery
in s iterations whenever ∥D̂†

S D̂TL\S∥∞ < 1.

B.5. Proof of Proposition 4.1

Statement. There exist instances with ERC(D̂;S) ≥ 1

yet ERC(D̂;S |TL) < 1 for some nested T0 ⊃ T1 ⊃ · · · ⊃
TL satisfying the right-subtree assumption S ⊆ Tℓ. Con-
sequently, hierarchical OMP yields a strictly larger ERC-
certified success region than global OMP on the full dictio-
nary.

5This follows the classical exact recovery coefficient (ERC) of Tropp
[61].

Proof. If the maximizer(s) contributing to ERC(D̂;S) lie
outside TL, pruning them ensures ERC(D̂;S |TL) <

ERC(D̂;S), so the restricted value can fall below 1 while
the global one remains at least 1. Whenever this happens,
Lemma B.4 certifies exact recovery for Hierarchical OMP
on TL, whereas the ERC test for OMP on the full dictio-
nary fails. Thus, the subtree-restricted algorithm possesses
a strictly larger guaranteed support-recovery region.

C. Step-by-step construction of a Hierarchical
Concept Embedding

Assume we are at depth l > 0 of the hierarchy. The path
from the root to the current parent a(πl) ∈ Rd consists of
the l+1 ancestor vectors

Al = {a(π0),a(π1), . . . ,a(πl)}, π0 < π1 < · · · < πl.
(29)

We must construct b children {a(j)}bj=1 ⊂ Rd that satisfy:

(i) Hierarchical Orthogonality:

(a(j) − a(πk))⊤a(πk) = 0, k = 0, . . . , l, (30)
j = 1, . . . , b. (31)

Note that the current parent a(πl) satisfies this condi-
tion through induction.

(ii) Regular (b−1)-simplex structure:

(a(j)−gl)⊤(a(k)−gl) =


λ2
l , j = k,

− λ2
l

b− 1
, j ̸= k,

(32)

where gl is any point satisfying all l+1 equations in
Eq. (30) and λl is the scaling factor for the simplex
so that ∠(a(j),a(πl)) = θl.

(iii) Cone condition w.r.t. the current parent:

∠(a(j),a(πl)) = θl

⇐⇒ ∥a(j) − a(πl)∥ = ∥a(πl)∥ tan θl,
j = 1, . . . , b.

(33)

Note that this iff condition is true because ⟨a(j) −
a(πl),a(πl)⟩ = 0 due to Eq. (30).

C.1. Feasible Subspace induced by Hierarchical Or-
thogonality

Let

Al =
[
a(π0) a(π1) . . . a(πl)

]
∈ Rd×(l+1). (34)

The l+1 hyperplanes in (30) intersect in the affine sub-
space

Vl = {x ∈ Rd : A⊤
l x = hl}, (35)
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where hl = [∥a(π0)∥2, . . . , ∥a(πl)∥2]⊤. If the ancestor
columns of Al are linearly independent6, then

dimVl = d− (l + 1). (36)

To be able to embed a regular (b−1)-simplex for all depths
we therefore require the depth-dimension condition

d ≥ L+ b. (37)

Equation (37) quantifies the depth–dimension trade-off: one
ambient degree of freedom is lost per additional ancestor
constraint, while (b−1) directions are always needed to ac-
commodate the regular simplex of conditionally indepen-
dent children.

Our goal is to construct the children of a node a(πl) at
level l.

1. Find one feasible origin. Solve the linear system
A⊤

l x = hl to obtain any particular solution gl ∈ Vl. If
we take into account the cone half-angle condition, we
can further reduce the set of solutions to the intersection
of Vl and the cone centered at the parent aπl with the
half-angle θl (which we defined in Section 3).

One solution that gives us the most half-angle budget is
choosing the current parent a(πl) as the origin, i.e. gl =
a(πl). By construction, every node is orthogonal to all of
its ancestors. Hence for each k ∈ {0, . . . , l}

(a(πl) − a(πk))⊤a(πk) = 0 (38)

=⇒ a(πl)⊤a(πk) = ∥a(πk)∥2. (39)

2. Basis for the difference linear space. Compute an or-
thonormal basis

Ul ∈ Rd×(d−l−1), (40)

A⊤
l Ul = 0, (41)

U⊤
l Ul = I d−l−1, (42)

e.g. by taking the d− (l+1) bottom left singular vectors
of Al, denoted as Ul+2:d.

3. Canonical regular simplex in Rb−1. Use the centred
construction d̃i = ei − 1

b1, i = 1, . . . , b (cf. Eq. (7)).

4. Scale d̃j to satisfy the cone condition.

λl = ∥a(πl)∥ tan θl, (43)

dj = λl d̃j . (44)

5. Embed and translate.

a(j) = a(πl) + Ul+2:d dj , j = 1, . . . , b. (45)
6This is typical because every level adds a new non-collinear vector.

Choosing the scale factor

λl = ∥a(πl)∥ tan θl, (46)

forces ∥a(j) − a(πl)∥ = ∥a(πl)∥ tan θl for all j, and there-
fore ∠

(
a(j),a(πl)

)
= θl, which is precisely the require-

ment in Eq. (33).

D. Additional Experimental Results
D.1. Additional Synthetic Experiment Details
Branching factor b = 3, hierarchy depth L = 7, dimen-
sion d = 50. Initial cone half angle = 85 degrees. Initial
vector norm = 0.8. Geometric reduction factor = 0.4. Total
leaf nodes = 2187. Total nodes = number of atoms = 3280.
Gaussian noise for each leaf for data generation σ2 = 10−5.
Generate 5 samples per leaf for a total of 10,935 samples.

D.2. Additional Real-Data Experiment Details

Model Architecture and Training Details. We use CLIP-
ViT-L/14 as the backbone. To train the linear classifier, we
use the AdamW optimizer [38] with a weight decay of 10−4

and a learning rate of 10−1. To train the CBM model, we
use the Adam optimizer with a learning rate of 10−1 and
train for 500 epochs. We provide the detailed hyperparam-
eters in Tab. 3.
Synset Difference Interpretations. We use CLIP text em-
beddings [52] and GPT-5 [47] to generate the text interpre-
tations of the synset differences. We provide the top-10 con-
cepts for each parent-child pair in Tab. 4. We also use the
GPT-5 prompt in App. D.2.
Ablation Study on the Beam Size. We perform an ablation
study on the beam size for Hierarchical OMP. We vary the
beam size from 1 to 8 and evaluate the concept recovery
accuracy on ImageNette. We provide the results in Fig. 10.
Taxonomy Generation Prompt. We use the taxonomy
generation prompt from Zeng et al. [63] in App. D.2 to gen-
erate the taxonomy on CIFAR100.

Table 3. Key hyperparameters used in experiments for each
dataset.

Hyperparameter ImageNette CIFAR100 ImageNet

Batch size 4096 4096 16384
Classification training epochs 500 500 1000
HCEP beam size 8 16 32
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Figure 8. On ImageNet, HCEP achieves competitive accuracy while having higher concept precision/recall than sparse concept prediction
baselines (OMP, Hierarchical NN).

5 10 15 20
Sparsity Level

0

20

40

60

Te
st

 C
la

ss
ifi

ca
tio

n 
Ac

cu
ra

cy

5 10 15 20
Sparsity Level

0.2

0.4

0.6

0.8

Te
st

 S
up

po
rt 

Pr
ec

isi
on

5 10 15 20
Sparsity Level

0.0

0.2

0.4

0.6

Te
st

 S
up

po
rt 

Re
ca

ll

HCEP OMP Hierarchical NN CBM Nearest Neighbor

Figure 9. When we restrict ImageNet training set to 25 images per class, HCEP outperforms all interpretable baselines.
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Figure 10. We vary the beam size in the range of (1, 4, 8) and evaluate on ImageNette.
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Table 4. Example text interpretations of child–parent synset differences produced via CLIP embeddings and GPT summarization, with the
top-10 contributing concepts.

Parent→Child Pair Top-10 Concepts Text Interpretation

bear→ polar bear
1. Matte white texture
2. Thick white winter fur coat
3. White plumage in winter season
4. White fur with cream patches
5. Long, silky white coat
6. White fur blending with surroundings
7. Pure white fluffy coat
8. White coat with lemon markings
9. White cue ball

10. Long, corded white coat

thick matte white fur blending with snow.

container→ basket
1. Wicker baskets filled with baguettes
2. Rectangular shopping baskets
3. Stacked woven baskets
4. Rear storage basket
5. Rectangular open-top basket
6. Woven rattan backrest
7. Plastic shopping baskets
8. Perforated cutlery basket in lower rack
9. Woven rattan seating surfaces

10. Rectangular basket frame

open-top woven or perforated sides with
handles.

structure→ lumbermill
1. Vertical log slicing machines
2. Massive log cutting machines
3. Metallic sawmill machinery
4. Heavy-duty sawmill frames
5. Conveyor belts with wood pieces
6. Wooden board sorting systems
7. Exposed wooden axles
8. Wooden log feeding chutes
9. Stacks of cut wooden planks

10. Narrow wooden steering wheel

vertical log-sawing machines and plank
conveyors.

Taxonomy Generation Prompt

Given root concept <root> and leaf concepts <leaves>, generate a detailed hierarchical taxonomy that organizes
these leaves under the root. Create multiple levels of intermediate category hierarchies to build a rich, fine-grained
classification structure. Use as many hierarchical levels as needed to create meaningful semantic groupings and
subgroupings.
The format is: 1. Parent Concept 1.1 Child Concept 1.1.1 Grandchild Concept.
CRITICAL: Every single leaf concept from the list must appear exactly as given in the taxonomy as the deepest level
nodes. You may and should add multiple levels of intermediate concepts but do not add new leaf concepts. Before
finishing, verify that each leaf concept from <leaves> appears in your taxonomy. Aim for depth and semantic
richness in the hierarchy.
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Taxonomy Generation Prompt

TASK: Generate a concise phrase (3-10 words) that describes what distinguishes ”<child>” from its parent category
”<parent>”. This is for a hierarchical sparse model. A residual represents the visual difference between a child
and parent category. Most correlated visual concepts (from CLIP embeddings): <concepts string> REQUIRE-
MENTS:
1. Generate ONE short phrase (3-10 words) that captures the key distinguishing features
2. Base your phrase on the correlated concepts provided above
3. Focus on the most salient visual features
4. Be specific and concrete, not vague or generic
5. Use natural language that a human would use to describe the difference
6. IMPORTANT: Do NOT use the synset names (”<parent>” or ”<child>”) in your phrase
7. IMPORTANT: Describe only the visual features, not the category name
EXAMPLES OF GOOD PHRASES: - ”tawny coat with distinctive facial markings” (for a specific dog breed) - ”long
curved neck and pink coloration” (for flamingo vs bird) - ”striped pattern and elongated body” (for a specific fish) -
”metallic surface with cylindrical shape” (for a lighter)
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Figure 11. Observed Hierarchical Orthogonality test on CIFAR100. The cosine similarity between child-parent difference vectors and their
parents is close to zero, while random non-parent pairs have significantly lower cosine similarity.
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